Major Shared Resource Cen t er

ERDCIVI a KUs

ERDC MSRC/PET TR/00-34

Tools For Understanding Program Performance

by

John Mellor-Crummey

31 July 2000

10h0012000

Work funded by the DoD High Performance Computing
Modernization Program ERDC
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC94-96-C0002
CSC Nichols

Views, opinions and/or findings contained in this report are those of the author(s) and should not be con-
strued as an official Department of Defense Position, policy, or decision unless so designated by other
official documentation.

Tools for Understanding Program Performance

ERDC MSRC PET Project Report
July 31, 2000

Dr. John Mellor-Crummey, Rice University

Introduction

Over the past two decades, the peak performance of modern computers has increased
dramatically through a collection of innovations in computer architecture. However, the
increased potential for performance has come at the expense of architectural complexity.
Achieving a substantial fraction of peak performance on modern systems requires exploiting the
system's capahilities effectively.

In today's computers there is a substantial difference in speed between processors and system
memory. To bridge this gap, commodity computer systems use multi-level memory hierarchies.
Typically, such memory hierarchies contain two or more layers of cache and a trandation look-
aside buffer. It isimpossible to achieve good performance on computer systems that use memory
hierarchies unless most of a program's data references are satisfied either from the processor's
registers or the top level of the memory hierarchy. Otherwise, the processor will spend much of
itstime idle waiting for data to arrive. To ensure that most of the program's data references are
satisfied at the top levels of the memory hierarchy, the program must exploit spatial and temporal
reuse of data.

Besides making efficient use of a memory hierarchy, to achieve high performance a program
must also effectively exploit al of a system's capabilities. For example, a scientific program

must address a range of issues from ensuring that instruction pipelines are full to issuing memory
references in bunches so that multiple misses are outstanding when the processor stalls waiting
for memory.

Understanding the details of such complex issues is extremely difficult for application
developers. Effective tools to support execution analysis and program tuning are essential. To
help DoD users identify performance bottlenecks and to tune programs to exploit modern
computer systems effectively, we constructed two tools. The focus of our effort has been to
develop tools that are easy to use rather than inventing new measures or new ways to collect
them.

Our focused effort originally aimed at developing MHSIM - a simulator and program
instrumentation tool for pinpointing the causes of poor memory hierarchy utilization in Fortran
77 programs, including those that use Fortran 90 array operations as shorthand for loops. Dr.
Jane Smith of ERDC M SRC supplied us with STWAVE as an example of the type of Fortran
applications for which ERDC users would like detailed performance feedback to support
program tuning. After examining STWAVE, it became apparent that our tool for instrumenting
Fortran programs for use with the MHSIM simulator would need much more extensive support

for Fortran 90 language constructs than had been originally proposed as part of this focused
effort. To address this problem, we designed and developed a second tool, HPCView, a
language-independent tool that uses hardware performance counters rather than smulation as the
basis for collecting performance information. While hardware performance counters can be used
to accurately measure the memory hierarchy utilization by identifying the statements that cause
cache misses, they can also be used to diagnose a wide range of performance problems by
pinpointing where the program spends its cycles and what operations are being performed there.
We designed HPCView to correlate different types of program metrics (e.g., cycles, floating
point operations, and cache misses) with each other and with the program source. The MHSIM
and HPCView tools are complementary. HPCView can be used to identify where the key
performance bottlenecks in a program are located. MHSIM supports detailed analysis of memory
hierarchy behavior and can help understand why the memory hierarchy utilization of a program

is poor. In the following sections, we briefly describe the MHSIM and HPCView tools.

Both tools produce hyper-linked HTML documents for exploration with Netscape Navigator.
This user interface strategy has three key advantages. First, it eliminates the need to develop a
custom user interface. Netscape Navigator provides arich interface that includes the ability to
search, scroll, and navigate hyperlinks within documents. Also, it provides users with what has
become a familiar paradigm for navigating information.

MHSIM

For an application code to achieve high performance, it must exploit caches effectively. Most
scientific codes in production use were developed for vector processors that had no caches.
When porting such applications to machines with multiple layers of caches, it is difficult to
understand the reasons for poor memory hierarchy utilization.

To address this problem we have developed MHSIM, an integrated instrumentation tool and
simulator. MHSIM is designed to

identify program references causing poor cache utilization,
guantify cache conflicts, temporal reuse and spatial reuse, and
correlate simulation results to references and loops in an application program.

The MHSIM simulator and associated instrumentation tool orchestrate a detailed smulation of
multi-level memory hierarchies that can help identify the causes responsible for poor memory
hierarchy utilization and help users achieve a higher fraction of peak performance. The impact
and DoD relevance of thistool isto help DoD users understand how to tune memory hierarchy
performance of complex Fortran 77 and Fortran 90 application codes.

The MHSIM simulator and instrumentation tool for Fortran programs is available from
http://www.cs.rice.edu/~dsystem/mhsim. The distribution contains source code for the smulator
and Solaris and Irix binaries for the instrumentation tool. A portable source-code release of the
instrumentation tool will soon be available as well as part of a distribution of the Rice Dsystem
program analysis and compilation tools for Fortran. Documentation in the release includes
instructions for building the simulator library, online help information about how to navigate the
simulator results, and several directories of examples with Makefiles that demonstrate how to use

2

the simulator to track memory hierarchy utilization.

Using the MHSIM simulator to understand the memory hierarchy utilization of a Fortran
program involves a sequence of five steps. First, the libmhsim simulator library is configured
using a configuration file that specifies parameters of the target system. Second, the Fortran
source code under study is instrumented using mhinst, a source-to-source instrumentation tool.
The instrumentation tool augments the program with calls to the libmhsim library routines to
monitor data accesses and relate simulator results back to the source code. Third, the
instrumented Fortran code is then compiled with any Fortran compiler and linked with the
libmhsim library. Next, the compiled version of the instrumented program is executed normally
on any platform. During execution, the calls added by the instrumenter will pass information
about the program's data accesses to the smulator, which will track information about the
program's memory hierarchy utilization separately for each source-program reference. When the
program finishes executing, the smulator correlates the simulation results with the source
program and writes them out as a hyper-linked HTML database that forms the basis of a multi-
pane user interface. Finally, a user loads the root page of the simulation results and interactively
inspects them with Netscape Navigator. Each of these steps will be explained briefly below.

Configuring the simulator

Simulator configuration files specify a number of parameters about the memory hierarchy of the
target system being smulated:

number of levels of memory hierarchy,
number of cache lines,

line size,

associativity,

write-through or write back, and
trandlation-lookaside-buffer configuration.

The format of the configuration files is documented by sample configurations provided in the
MHSIM software release. The release contains configurations for several sample memory
hierarchies including a fully associative cache, and configurations matching the characteristics of
an SGI 02, and an SGI Origin 2000.

The configuration file is processed with a simulator configuration tool which instantiates a
configured version of the routine that smulates memory access. The code to simulate an access
to a particular cache is coded as a C++ template. The configuration tool speciaizesthe
cache_access template for each level of the memory hierarchy and passes the configuration
constants for that level of the memory hierarchy as parameters to the template. The C++ template
instantiator uses these constants to instantiate a customized version of the cache simulation
routine for each level of the memory hierarchy. The resulting code has all of the constants for
cache, line, and set sizes as compile-time constants, which gives the compiler information to
optimize the object program more effectively.

Running the mhinst instrumentation tool

The mhinst program instrumentation tool processes Fortran programs and adds calls to the
libmhsim library to record source-code mapping information for every array reference, loop, and
procedure. We illustrate the instrumentation process with an example. Consider the following
source program fragment:

leak = 0.0
k = kO - k2
dom =1, mm
m=m + mo
doj =1, jt
doi =1, it
phi kb(i,j,m) = phikbc(i,j,m
| eak = | eak
* + wtsi (m)*phikb(i,j,m)*di(i)*dj(j)
face(i,]j,k+k3,3) = face(i,j, k+k3, 3)
* + wtsi (m*phikb(i,j,m)
end do
end do
end do

| eakage (5) = | eakage(5) + |leak

The instrumented version of the fragment is shown below.

leak = 0.0

k = kO - k2
call nmhsimenter_scope(nhsi mscope_11)
dom =1, nm

m=mnm + mo

call nhsi menter_scope(mhsi m scope_12)

doj =1, jt
conti nue
call nmhsimenter_scope(nhsi mscope_13)
doi =1, it
call nmhsi m(MHSI M_RARRAY, 8, phikbc(i, j, m, mhsimref_14,
* MHSI M_WARRAY, 8, phikb(i, j, m), nhsimref_15, NMHSI M_NONE)
phikb(i, j, m) = phikbc(i, j, m
call mhsi m{ MHSI M_RARRAY, 8, dj(j), nmhsimref_16, MISI M RARRAY, 8, di(i),
* mhsimref_17, MHSI M RARRAY, 8, phikb(i, j, m), nmhsimref_18
* MHSI M_RARRAY, 8, wtsi(m, mhsimref_19, MHSI M _NONE)
leak = leak + wtsi(m) * phikb(i, j, m) * di(i) * dj(j)
call nmhsi m(MHSI M_RARRAY, 8, phikb(i, j, m), mhsimref_20, MSI M RARRAY, 8
* wtsi(m, nhsimref_21, MASI M RARRAY, 8, face(i, j, k + k3, 3)
* mhsi mref_22, MSI M WARRAY, 8, face(i, j, k
* + k3, 3), nmhsimref_23, MiSI M_NONE)
face(i, j, k + k3, 3) = face(i, j, k + k3, 3) + wtsi(nm * phikb(i, j, m)
enddo
call nhsi mexit_scope(mhsi m scope_13)
conti nue
enddo
call nmhsimexit_scope(mhsi mscope_12)
continue
enddo

call nmhsimexit_scope(nhsi mscope_11)

cal | nmhsi m(MHSI M_RARRAY, 8, |eakage(5), mhsimref_24, MASI M WARRAY, 8, |eakage(5),
* mhsi m ref_25, MHSI M_NONE)

| eakage(5) = | eakage(5) + leak

Loop entry and exits are instrumented with callsto mhsim_enter_scope and mhsim_exit_scope
respectively. Each scope entry/exit operation is passed a handle that identifies the source location
of the scope. These calls perform bookkeeping for constructing loop level summary statistics.

4

The instrumentation tool adds calls to mhsim before each array access to smulate the response
of the memory hierarchy. Each simulator call is passed a type code indicating whether the
operation isa READ or WRITE of an array, the number of bytes accessed, the address of the
access, and the handle for the source reference corresponding to the access. Below we show
initialization of a handle for a sample scope.

call mhsim.init_scope(mhsi mscope_13, 'sweep.nmhsimsrc.f', 199,
* "', MHSI M LOOP_SCOPE, mhsi m scope_12)

This call creates a scope handle known as mhsim_scope 13 that corresponds to the loop on line
199 in file sweep.mhsim.src.f (a preprocessed version of the source file sweep.f generated by the
instrumentation tool) which is enclosed in the loop identified by the handle mhsim_scope 12.
Initialization of a handle for a reference is smilar as shown below.

call mhsiminit_ref(nmhsimref_ 23, MSI M WARRAY, 'face(i,j, k+tk3
* ,3)', 'sweep:face', mhsimscope_13, 202, 23, 43, 8)

This cal creates areference handle known as mhsim ref 23 for aWRITE access to the
reference face(i,j,k+k3,3), an 8-byte element of the local variable face declared in routine sweep.
The reference is on line 202 spanning character positions 23-43. The reference occurs inside the
scope mhsim_scope 13. The simulator uses these handles to relate accesses to source program
references.

Limitations of source-code-based instrumentation and simulation

The MHSIM simulator uses the addresses passed to the instrumentation routines as the basis for
its simulation. The declarations of handles that are inserted by the instrumentation tool perturb
the addresses of the program variables. This perturbation affects the absolute position of the data
elements which affects the cache conflicts noted by the simulator. Our experience isthat the
perturbation does not substantialy affect the qualitative nature of the results, although in the
worst case it could.

A second limitation of the source-code instrumentation strategy used by mhinst is that the data
accesses specified in the source program will be simulated in their canonical execution order.
Any compiler-based loop transformations that might be performed by the back-end compiler are
not accounted for.

Exploring MHSIM simulation results

The MHSIM simulator records the results of its smulation in a collection of HTML files that can
be browsed using Netscape Navigator version 4.0 or higher. The hyperlinked HTML files
generated by MHSIM use a set of Javascript routines to provide an integrated user interface. The
top level display of the simulator results is shown below.

The top left pane of the display shows a list of instrumented source files in the program. For this
5

simulation, there was one file: sweep.f.

[®] Hetscape: mhsim simulation results |

@17 What's Related

phiir = #phiih(i, 1k, mi)
i= il - 12

#phii(i) = phiir

compute source from Pn moments (I-line)
do i =1, it
#phi(i) = #src{i, j. k. 1)
enddo
continue
don =2, om
continue
doi=1, it
#phii) = #phi{i) + #pnim, n, ig) * #srcl{i, j, k. n)
enddo
continue
enddo

if (. not. do_fizup) then

I-line recursion: without flux fizup

Cache Level] -Miss- ---Miss—- -Temporal -Spatial-
Misses—- % Totl --Ratio-- --Ratio Use-—- numBlocks

1 #srcii, J.kon) 1. 76e+07 . Tde+05 .08e-02
2 #flux(i, 4, k.n) 1. Tee+07 . Tde+0s .08e-02
3 #face(i,], k+k3, 3 5. G8e+06 _25e+05 O8e-02

2 #srcii, i, kon) 1. 332407 . BBe+lb
3 #face (1, 3, k+k3, 3) 4. 41e+06 CE0e+lb
4 gface (1, 7+73, k. 2) 4. 41e+06 . 59e+06

2 #srcii, j, kon) 5. 50e+0p . 53e+05 . C00e+00 9 1ge-09
3 gsrcii, 1.k 1) 2. B2e+0B . 96e+05 b3 . 00e+00 . 00e+00
4 gface i, 7+73, k, 2) 2. BBe+0Bb .94 e+05 . 00e+00 00e+00

Lot I ol Bt I L s

EVICTOR. #src(i, J.k 0 TLE #flux(i, .k, n) 220201

#flux(i, .k, 1) S0Z6ET
#face (i+13, j,k, 1) 37350
#sigt(i. g, k) 24740
#srcil, j.k.n) 15105
#face (1,9+73, k, 2) 14674
#phijhb (i, Lk, mi) 4202

The upper right pane displays the source code of sweep.f, annotated with hyperlinks that enable a
user to access information available for areference or loop with a single click. Clicking on a#
hyperlink preceding a reference will autoscroll each of the panes below to display the simulation
results associated with that reference. Next to each scope are two hyperlinks. The 'L hyperlink
will cause loop summary information to be displayed in the panes below rather than the
reference-level information shown in the figure. The 'A’" hyperlink will display loop-level

summary information for each array referenced in the loop.

The next three panes show simulation results collected for the target memory hierarchy, which in
this case consists of a TLB, primary and secondary cache. Each level of the cache showsthe
name of the associated source code reference. Clicking on the hyperlink preceding any reference
in these panes will cause the source pane to navigate to the appropriate line in the appropriate
source file and all other panes of simulation results to auto-scroll to display the information

6

associated with thisreference. For each reference, the panes for each memory hierarchy level
show the number of hits and misses, the percentage of total misses this represents, the missratio
for this reference, the fraction of the data reuse for this reference attributed to temporal locality
(i.e., number of temporal hits/ number of total hits) and spatial locality (i.e., used bytes/ (line
size * number of evictions)), and how many blocks the reference occupied at this memory
hierarchy level. The sample display included shows that the source program reference src(i,j,k,n)
on line 430 accounts for over 20% of the misses at each of the levelsin the memory hierarchy.

The bottom pane in the top-level window shows evictor information. For a particular source code
reference, the evictor pane shows which source-code references faulted in cache lines that caused
a cache line containing this reference to be evicted from cache. The percentage of the evictions
caused by each source code reference is shown. Clicking on the hyperlink for an evicting
reference will auto-navigate the source and memory hierarchy panes to show the information
available for the evicting reference.

Below, we show the array-level summary information associated with a particular scope (loop or
procedure) that can be brought up in a separate window by clicking on the 'L " associated with a
scope. This summary pane displays the same types of information reported for references, but
summarizes all references to each array (and its evictors) within the scope.

[#] Metscape: array summary in ohe scop

-Miss -Miss—-
Misses-- % Totl --Ratio--

. 3Be+07
£luse . TEe+07
face .6Ee+07
sigt . B8e+06
ohikh Ale+ 0T

.9%9e+05 32,
.98e+05 32,
B2e+05 24,
. EEe+05
00=+03

. 2de+lE
. 2de+E
0le+0&
B2e+06
Ele+G

15e+06
.1de+06
. 28e+05
Bde+05
Ade+5

. D8e-02

. 04e-02

C03e-02 4.
.08e-02 4.5%9:-01
1204 Ode-01

cB0e-01 4. 77e-04
.30e-01 5.00e-01
J6e-01 4.97e-01
67e-02 7.54e-01
28e-02 ooe-01

J2le-02 1.00e+00
c1lee-02 1.00=+00
L36e-02 9.97e-01
.48e-02 1.00e+00
Ile_02 O0e+00

src . T8e+07
flug . 18e+07
face S 19e+07
phijh CBTe+07

| ohikb Age+T

src .13e+07
flux .13e+07
face . 99e+06
sigt . 8Ge+l&
phikb 08e+(6

sl BVl ol | | ol el eyl Y | | Yl Sl L R CR N
R =R e Rl | | apag Bl el | | T sl e e e
Nl R W g | | PR R RV | | MW g T W

Q0e+00

Percnt

100,

1

14,
=

Examining the summary information presented in the array pane for a costly procedure, or the
top-level program scope can identify what array or arrays result in the most missesin the
memory hierarchy. These arrays are the appropriate focus for improving a program's overall
performance.

HPCView

Interpreting the results of performance experimentsis a key problem for application developers.
Analysis often requires comparison and analysis of data from multiple experiments and sources.
Interesting raw performance metrics for a program include dynamic measures such as the
number of memory accesses or floating point operations performed by particular statements or
the number of cycles spent executing these statements. Such measurements can help a user
identify points in the program where significant effort is expended. Knowing where most of the
effort is expended in a program helps a user understand where any improvements through
program tuning are likely to yield the greatest benefits.

To facilitate performance analysis and program tuning, we developed HPCView, atool for
analyzing a program's performance data and correlating it with the program source. We designed
the HPCView tool to present multiple performance metrics for an application programin a
convenient form that can be easily understood. Performance data manipulated by HPCView can
come from any source, aslong asit is provided to the tool in the proper input format. To date,
the principal source of input data for HPCView has been program counter (PC) histograms
collected by sampling the program counter at periodic intervals, which are delineated by

overflow of a hardware performance counter being used to count occurrences of a particular type
of event (e.g. primary cache misses). These PC histograms are then interpreted using a program's
symbol table information to correlate the measurements with the program source.

A digtribution of the HPCView tool is available at http://www.cs.rice.edu/~dsystenmvhpcview.
Development of the HPCView tool is continuing under DOE support and future releases of the
tool will be made available to the DoD modernization effort. The HPCView distribution contains
source code for the tool. Documentation in the release includes several directories of examples
with Makefiles that demonstrate how to use the tool to correlate multiple sources of performance
data with an application program, and online help information about how to explore the
program's performance results. Provided as part of the release is a script that converts
performance profiles created by using SGI's prof utility to create line-level profiles of
performance measurements collected using SGI's ssrun utility (which uses hardware

performance counters to collect statistical profiles of particular types of program events).

The HPCView user interface

Like MHSIM, HPCView correlates performance data with an application program's source code
and produces a hyper-linked database of HTML documents that forms the basis of a multi-pane
user interface. A program performance database generated by HPCView can be interactively
explored using Netscape Navigator version 4.0 or greater. The hyper-linked HTML files
generated by HPCView use a set of Javascript routines to provide an integrated user interface.
Thetop level display of the smulator results is shown below.

% compileSstware [O7/20000 16:40:12) - Netsoape

o0 Commuricator Help

=
-
SOURCE FILE: ./compile/styaws. £o0
L340 el = el + wmte|dm, LL)+wpive g, 11 =
La41 end do
L3492 ray angl = atan | |ogrltsiniandl) +uril, 11,
- |ogrlvoos [angl) +uxid, 1511
843 !
44 i caloulate ahomled =pd cefrschted =n=cpy at pownt £
295 ! distribate to grid points and angls baods
Adqe 1
LAY enid, Ll = g
|cgal foplTocoa (cey angl-aogl| fecl) / (cgsd ToaZ fooE |cay sng-angs)fecd | f=1
T lain/f deland) B -
ERE] and if
a4 end 1f
asc Eod 11
asl end if
452 13 coptinue
LAss end o 'do L= 1, n=
a54 =nd if ¥
| morted | mort | =oct | =oct | =mozt
Lomaticsm | oy koo k| fdo koo % | fdac kom % | fgfp hop % | ftlb)
PO | 1.35e+10 100 | 8.9%e407 100 | 1.442405 100 | 3.01+D0 100 | 2.53a-
ATANS (ACans , =idTs| | £.15e+09 16 | 9.15e+04 0 | 5.90=+401 O | S.&re+06 17 | l-qiﬂ
stomes £00: 1726 | 1.,01=+09 B | l.47e+04 0O | S.80=+402 0O | B.78=+07 3 |
libm dpis (dedis.e:133) | 8.72e+0B 71 z.93e+0% o | 3.99=+DB 12 | 1.2
ood (moa.c:l9d) | #.35e408 £ | L.84e404 O | 5.80=+401 O | 2.29e+DE 8 | 2.3
Canh (Cann.ciliid) | V. EDe40d B | Z.53e405 0O | l.182402 O] 2.47=+0B 4 | 4.7
=toaes £00: 047 | 5.F1=+08 4 | 1l.45=+06 I | 1.13=+403 1| 5.80=+07 2 | 2.1:
stoanre . £80: 1716 | 5.25e=+08 1 | Z.Zee+04 O | 5.30=+401 O | %.43=+07 1| 5.3
scusesa FO0: 837 | 4.FTe+08 4 | L.5Se+06 = | 1.07=+4D3 1| T-13e+D7 2 | 1.0
stomye £50; 791 | 4,70e+08 4| l.894e+04 O | | T.25=+07 3 |
=inh (=aph.c:ill8) | F.53=408 3] S.Gée+dt O | 2.03=+08 7 | 4.7
=coars £E0: 1718 | =.22e+08 2| 5.zee+Dt O | | T-42Ze+07 2 | =]
L == : . . 2 rm .
Facent Scope | | | | |
Cureent Scope Procgeem | 1-33=+10 100 | BH.989=+37 100 | 1.%9=+05 100 | 3.01e+09 100 | 2. SHe
Child Scopes #atwewre . £30 | 7.90=+02 53 | B.9zZ=+37 99 | 1.%le+0S 98 | l.27eHd2 42 | 2.5 =
farand.c | 2.152+0% 16 | 2.18:=4+404 0 | S5.BO0e+#01 0O | S5.26e405 17 | 1.d¢
#doim.c | 2.72=+08 7 | 3.43=+11 0O | | 3.08=403 13 | 1,215
[i I e il AEE

The interface contains severa panes:

The top pane at the top displays the title of the performance database. The title pane also
includes two hyperlinks. The 'Help' link on the right displays this manual. The 'Reset’
link on the left reloads all files. The Reset button isintended for use if the browser
becomes confused and has difficulty navigating the documents in the performance
database.

The files pane on the left contains the list of files for which HPCView generated
performance information. The list of al known source filesis grouped according to the
directoriesin which the files were found. Within adirectory listing, files are listed in
alphabetical order. The "Other Files" section of this pane contains a list of files for which
the HPCView tool could not find source. Clicking on any file in the list in this pane will

9

display the selected item in the Source File Pane described below. The source file pane
on the upper right contains the currently 'selected’ source file.

The source-file pane displays information about the currently selected sourcefile. Lines are
numbered for easy reference. Lines for which performance information can be found in the
performance and scope hierarchy tables are marked with a L (which stands for line number
information) in front of their line number. Clicking the L highlights the chosen line number
and navigates to the corresponding row in the performance table. If the scope table currently
displays the selected line, it highlights it as well.

For any file for which the HPCView tool possesses performance information but cannot
locate the corresponding source file, HPCView generates afile synopsis. The synopsis
contains three lines for each of the file's procedures, which are generated according to the
following scheme:

L<l i ne> <subr outi ne name>

<li ne> end <subrouti ne name>

For files for which no source code is available, HPCView collapses performance data for
procedures within. HPCView uses the lowest source line number within a binary procedure
asthe line for which it reports the summary information for the procedure.

A table of line-level performance metricsis displayed in two panes. One contains headings
for each of the columns of performance metrics. The other contains arow for each source
line that has at least one value for one of the metrics shown.

When HPCView generates the performance table it uses a configuration file to determine
what files contain the data for the performance metrics and what names the user wants to
refer to the metrics by. HPCView uses the display names as column headers and the metric
values to fill in the performance table.

Each table row starts with alocation field, which contains the file name and source line
number. The following row elements contain the metric values found in the profiles. Row
elements are empty if the metric's profile did not contain any information for that source line.
Since metrics displayed by HPCView for a program are frequently generated by sampling
directed by hardware performance counters, it can happen that some source lines have
samples for one hardware metric, but not for another.

In most cases table rows correspond to executable statements in a known source file. If
HPCView can not find the source file for a procedure whose line is mentioned in a profile, it
displays the metric summaries for this procedure in the performance table. Metrics are
summarized by adding metric values of all linesin a procedure.

The interface highlights arow if you click on the row's location field. It also shows and
highlights the selected line in the source file pane. In some cases this means that a new

10

source file is loaded. In other cases the currently shown source file scrolls the highlighted
line into view.

The performance table is sorted according to the performance metric whose column header is
shown in red. Clicking on the'sort" link of the metric's column header will re-sort the data
for both the performance table and the scope hierarchy display described below.

The bottom of the window contains a hierarchical display of performance information for
program scopes. This display presents inclusive performance statistics for the program,
source files, procedures, and source lines. The three-part display shows inclusive
performance measurements for the current scope, its parent scope, and its child scopes. The
information displayed for each scope is in the same format as the performance table. Each
row starts with alocation field and is followed by values for each of the performance metrics.

When an HPCView performance database isfirst opened with a browser, the scope hierarchy
table display shows the program selected as the current scope with the program's files as the
child scopes. To examine the performance information for a particular file, click on the arrow
in front of its name and the scope panes will navigate to display the selected file the “ Current
Scope’, its procedures as” Child Scopes’, and the program information in its “Parent Scope’
row. In general clicking on the up- or down-arrows at the beginning of a row makes that
scope the “ Current Scope” and shows its parent and child scopes in the other linesin the

display.

The child scopes shown in the scope hierarchy display are sorted according to the
performance metric whose column header in the performance table is shown in red. The data
in the scope hierarchy display and the performance table can be sorted by another metric by
clicking on the 'sort' link of the metric's column header.

Navigation of the information in a performance database is initiated by selecting a hyperlink for
alinein any part of the interface. At any time you may select a source line in the interface. Y ou
do so by either selecting the L (which stands for line number information) in front of aline
number in the source file pane or the location field at the beginning of arow in the performance
table. The selected line is highlighted by the interface and the performance table scrolls so that
metrics for the selected line are visible. If the selected line is one of the 'Child Scopes' in the
scopes hierarchy display, that display will also scroll to make the selected line visible. If you
now select another line the previously selected line is changed from highlighted in the source file
pane, the performance table, and the scopes hierarchy display.

By selecting different lines from a particular code section you can investigate that section's
performance. By selecting the location fields of rows with high performance metric values you
can quickly find the source code that these performance values relate to.

Browser configuration

HPCView databases currently require using Netscape Navigator 4.0 or higher. Configuration
information below assumes that you are using Navigator.

11

Thetop level window is a set of frames. Their relative sizes may be adjusted by clicking the
middle button on a frame border and dragging it to increase/decrease frame sizes.

Depending on your Navigator window size you may want to adjust Navigator's settings so that
text will be displayed in a bigger or smaller font. To do so choose "Preferences’ under the
"Edit" menu. In the Preferences Dialog you need to choose "Fonts' and change the font and/or
size of both the Variable and Fixed Width fonts. Make sure "Use document-specified fonts,
including Dynamic Fonts" is selected and click "OK".

Troubleshooting

HPCView databases currently require using Netscape Navigator 4.0 or higher. The performance
databases are not yet compatible with Internet Explorer.

We recommend waiting until all files are completely loaded before clicking any links. Clicking
on links before all datais loaded in any pane may interrupt loading and result in an incomplete
setup. If this causes problems try to click the Reset button to reload files from scratch. If this
does not help either clear Navigator's caches: choose "Preferences’ under the "Edit", click on
"Cache" inthe "Category" pane, and clear the disk and memory cache; then try to reload.

Ongoing HPCView development

Understanding what opportunities for tuning exist may require understanding synthetic
performance metrics such as the instruction mix in a program's loop nests (loop balance)
compared to the ideal instruction mix supported by the target architecture. HPCView has been
designed to support computing such synthetic performance metrics and relating them back to the
program source. Computing metrics such as loop balance requires identifying where loops exist
in application programs. Currently, we are in the process of designing and developing a program
analysis tool to provide information about the location of loops to HPCView by analyzing
application binaries.

Acknowledgements

Thiswork was supported in part by the Department of Defense High Performance Computing
Modernization Program ERDC M SRC Programming Environment and Training under Contract
DAHC94-96-C002 and in part by the Department of Energy's Accelerated Strategic Computing
Initiative under research subcontract B347884.

12

